3,585 research outputs found

    Reducing AC impedance measurement errors caused by the DC voltage dependence of broadband high-voltage bias-tees

    Get PDF
    During the AC impedance characterization of devices, from the kHz-range up to the GHz-range, accuracy can be lost when a DC voltage is applied. Commercial high-voltage broadband bias-tees are often voltage-dependent, which can cause inaccuracies at low frequencies. A calibration technique with applied bias significantly improves the measurement accuracy.\ud Additionally, a bias-tee has been developed with a voltageindependent capacitor, suitable for DC voltages up to 500 V showing excellent performance up to several gigahertz. PIN diode limiters protect the measurement equipment from damage in case of a device breakdown.\u

    Rolling and sliding of a nanorod between two planes: Tribological regimes and control of friction

    Full text link
    The motion of a cylindrical crystalline nanoparticle sandwiched between two crystalline planes, one stationary and the other pulled at a constant velocity and pressed down by a normal load, is considered theoretically using a planar model. The results of our model calculations show that, depending on load and velocity, the nanoparticle can be either rolling or sliding. At sufficiently high normal loads, several sliding states characterized by different friction forces can coexist, corresponding to different orientations of the nanoparticle, and allowing one to have low or high friction at the same pulling velocity and normal load.Comment: 5 figure

    On the Trade-Off Between Quality Factor and Tuning Ratio in Tunable High-Frequency Capacitors

    Get PDF
    A benchmark of tunable and switchable devices at microwave frequencies is presented on the basis of physical limitations to show their potential for reconfigurable cellular applications. Performance limitations are outlined for each given technology focusing on the quality factor (Q) and tuning ratio (eta) as figures of merit. The state of the art in terms of these figures of merit of several tunable and switchable technologies is visualized and discussed. If the performance of these criteria is not met, the application will not be feasible. The quality factor can typically be traded off for tuning ratio. The benchmark of tunable capacitor technologies shows that transistor-switched capacitors, varactor diodes, and ferroelectric varactors perform well at 2 GHz for tuning ratios below 3, with an advantage for GaAs varactor diodes. Planar microelectromechanical capacitive switches have the potential to outperform all other technologies at tuning ratios higher than 8. Capacitors based on tunable dielectrics have the highest miniaturization potential, whereas semiconductor devices benefit from the existing manufacturing infrastructure

    Metastability of persistent currents in trapped gases of atoms

    Full text link
    We examine the conditions that give rise to metastable, persistent currents in a trapped Bose-Einstein condensate. A necessary condition for the stability of persistent currents is that the trapping potential is not a monotonically increasing function of the distance from the trap center. Persistent currents also require that the interatomic interactions are sufficiently strong and repulsive. Finally, any off-center vortex state is shown to be unstable, while a driven gas shows hysteresis.Comment: 7 pages, RevTex, 5 figure

    Classical linear chain behavior from dipolar droplets to supersolids

    Full text link
    We investigate the classicality of linear dipolar droplet arrays through a normal mode analysis of the dynamical properties in comparison to the supersolid regime. The vibrational patterns of isolated-droplet crystals that time-evolve after a small initial kick closely follow the properties of a linear droplet chain. For larger kick velocities, however, droplets may coalesce and separate again, showing distinct deviations from classicality. In the supersolid regime the normal modes are eliminated by a counter-flow of mass between the droplets, signaled by a reduction of the center-of-mass motion

    Nonequilibrium coupled Brownian phase oscillators

    Full text link
    A model of globally coupled phase oscillators under equilibrium (driven by Gaussian white noise) and nonequilibrium (driven by symmetric dichotomic fluctuations) is studied. For the equilibrium system, the mean-field state equation takes a simple form and the stability of its solution is examined in the full space of order parameters. For the nonequilbrium system, various asymptotic regimes are obtained in a closed analytical form. In a general case, the corresponding master equations are solved numerically. Moreover, the Monte-Carlo simulations of the coupled set of Langevin equations of motion is performed. The phase diagram of the nonequilibrium system is presented. For the long time limit, we have found four regimes. Three of them can be obtained from the mean-field theory. One of them, the oscillating regime, cannot be predicted by the mean-field method and has been detected in the Monte-Carlo numerical experiments.Comment: 9 pages 8 figure

    Density Functional Theory of Multicomponent Quantum Dots

    Full text link
    Quantum dots with conduction electrons or holes originating from several bands are considered. We assume the particles are confined in a harmonic potential and assume the electrons (or holes) belonging to different bands to be different types of fermions with isotropic effective masses. The density functional method with the local density approximation is used. The increased number of internal (Kohn-Sham) states leads to a generalisation of Hund's first rule at high densities. At low densitites the formation of Wigner molecules is favored by the increased internal freedom.Comment: 11 pages, 5 figure

    Slice Stretching at the Event Horizon when Geodesically Slicing the Schwarzschild Spacetime with Excision

    Get PDF
    Slice-stretching effects are discussed as they arise at the event horizon when geodesically slicing the extended Schwarzschild black-hole spacetime while using singularity excision. In particular, for Novikov and isotropic spatial coordinates the outward movement of the event horizon (``slice sucking'') and the unbounded growth there of the radial metric component (``slice wrapping'') are analyzed. For the overall slice stretching, very similar late time behavior is found when comparing with maximal slicing. Thus, the intuitive argument that attributes slice stretching to singularity avoidance is incorrect.Comment: 5 pages, 2 figures, published version including minor amendments suggested by the refere
    corecore